🤖 Vamos a calmarnos…

enter image description here

Eso es lo que se pide en un documento titulado “Statement on Superintelligence”, donde más de 2.000 firmantes —entre ellos Geoffrey Hinton, pionero de la IA profunda; Yoshua Bengio, otro de los padres del aprendizaje profundo; Steve Wozniak, cofundador de Apple; Richard Branson, fundador de Virgin; o los duques de Sussex, el príncipe Harry y Meghan Markle— piden que se prohíba preventivamente el desarrollo de superinteligencia hasta que se evalúen y cumplan determinadas condiciones.

🔗 superintelligence-statement.org

El documento entiende que no estamos ante solo mejoras incrementales de la IA, sino que hemos alcanzado la posibilidad de dar un salto a algo que “supere a los humanos en todas las tareas cognitivas”.

Dada la velocidad, la competencia global (empresas, países) y la dificultad de prever los efectos, sienten que el riesgo merece una intervención preventiva.

Abogan por el consenso público y científico, y no solo dejarlo en manos del mercado o de unas pocas empresas.

Este statement no es algo nuevo.Recuerda mucho al que se firmó hace más de dos años por otras tantas voces autorizadas, donde se pedía pausar el entrenamiento de sistemas más potentes que GPT-4 durante al menos seis meses, hasta evaluar su impacto y riesgos.

Una de las cabezas más visibles de aquel documento era Elon Musk, que, tras cofundarla, había abandonado OpenAI tres años antes. En aquel momento, muchos interpretaron aquella declaración como un intento de pararle los pies a Sam Altman en una carrera en la que ya perdían unos cuantos kilómetros. Y el tiempo les dio la razón, porque dos años después tenemos a Elon Musk reventando (o intentándolo) versión tras versión los benchmarks con su modelo Grok, y no parece que quede mucho de aquel Musk que quería ser cauto con el avance de la Inteligencia Artificial.

🤔 Sea como fuere, nos encontramos en la misma encrucijada que entonces: ¿Quién le pone el cascabel al gato?

En un mundo donde el mercado manda, ninguna empresa va, voluntariamente, a paralizar el avance de sus investigaciones , y ningún gobierno parece dispuesto a legislar para que lo hagan, máxime cuando los dos mayores implicados en este vergel son EE. UU. y China.

💣 Con estos dos países en el tablero, ya sabemos que la partida no es solo económica. Ninguno va a darle siquiera la oportunidad al otro de pasarle por la derecha en el ámbito militar. Y ese juego, aunque invisible para la mayoría de nosotros los mortales, se está jugando aunque no seamos conscientes.

Por cierto, entre los firmantes se encuentra la cantante Grimes, expareja de Elon Musk, con quien mantiene una disputa legal por la custodia de sus tres hijos.

Y tú, ¿qué opinas? ¿Se llegará a parar el avance para pensar dónde nos lleva todo esto? ¿O es imposible impedir la llegada —más pronto que tarde— de la Superinteligencia? Te leo. 👇

NVIDIA DGX Spark, ¿De vuelta a la tierra?

enter image description here

💭 Tras el viaje a la nube… ¿y si la IA estuviese a punto de devolvernos a la tierra?

Esta semana, Jensen Huang (CEO de NVIDIA) entregó a Elon Musk (xAI, Tesla, SpaceX…) la primera unidad del DGX Spark, la que describen como “la supercomputadora de IA más pequeña del mundo”.

📦 Este dispositivo, del tamaño de un libro, es capaz de ejecutar modelos de hasta 200B de parámetros en inferencia local. Lo que supone tener la potencia de un datacenter en el escritorio.

El DGX Spark monta una memoria unificada coherente de 128 GB accesible para CPU+GPU, rendimiento teórico de hasta 1 petaFLOP (FP4) y capacidad de clustering, lo que supone que, uniendo dos unidades, elevamos la cifra teórica de 200B de parámetros hasta los 405B.

Si bien estas cifras están lejos de los grandes supermodelos, hablamos de que Qwen, Mistral o Llama 3 en sus versiones grandes podrían moverse con ajuste fino de rendimiento. Suficiente para ejecutar modelos en un ámbito completamente privado y sin restricciones.

💰 El aparato rondará los 4.000 USD, que si bien no es apto para todos los bolsillos, es notablemente más económico que los cientos de miles que cuestan los sistemas rack o estaciones de IA tradicionales. Y aunque está lejos en desempeño, no lo parece tanto si valoramos su relación coste/rendimiento.

🧠 Y es que la lógica dice que el mercado seguirá evolucionando para mejorar y abaratar la electrónica dedicada a IA, y no es descabellado pensar que las mismas empresas que viajamos a la nube, sacando la electrónica de nuestros CPDs para llevarla a AWS, Azure y demás, hagamos un viaje parcial a la tierra, enracando de nuevo servidores dedicados a IA y buscando pequeñas islas de cómputo en las áreas donde el Compliance y la seguridad del dato lo hagan más razonable.

Y tú, ¿qué opinas? ¿Tiene futuro la electrónica orientada a IA en el ámbito doméstico y empresarial? ¿O la IA será Cloud completamente? Te leo. 👇